LETTER TO THE EDITOR

Check for updates

ZMYM2-FGFR1 fusion as secondary change in acute myeloid leukemia

Minghua Cao, Ruben D. Carrasco, Adrian M. Dubuc, Paola Dal Cin, Jonathan A. Fletcher and Sheng Xiao Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston (MA), USA

ARTICLE HISTORY Received 24 April 2018; Revised 12 June 2018; Accepted 19 June 2018

Gene fusions in hematopoietic malignancies are often primary drivers that define many aspects of these diseases. For example, BCR-ABL1 fusion is a diagnostic marker that encodes a therapeutic target for CML and subgroups of ALL and AML. Late-appearing secondary BCR-ABL1 fusion is very rarely reported [1-3]. Chromosome rearrangements involving 8p, which lead to FGFR1 fusion with various partners, are associated with myeloid/lymphoid neoplasms with eosinophilia. In a recent issue of Leukemia & Lymphoma, Strati et al. described the largest series of patients with FGFR1-rearranged hematological neoplasms. Each of the 17 cases had a chromosome 8p aberration, with FGFR1 rearrangement confirmed by FISH [4]. More than 80 FGFR1-rearranged hematological neoplasms have been described in other publications, and FGFR1 rearrangement was present in the main cytogenetic abnormal clone in all cases. Indeed, FGFR1 rearrangement was the sole cytogenetically demonstrable aberration in most of these cases [4-5]. This study reports the first case of AML in which t(8;13) FGFR1 rearrangement occurred as a secondary aberration, as a subclone of the initial EVI1-rearranged leukemia.

A 70-year-old female presented with fatigue, weakness, and lightheadedness. Physical examination was negative for adenopathy, bruise/bleed, hepatomegaly or splenomegaly. Complete blood count demonstrated pancytopenia with WBC 3.5, Hg 6.1, HCT 17.6, and Plt 89. Bone marrow biopsy showed that approximately 70% of the bone marrow cellularity was an interstitial infiltrate of intermediate sized blasts with round nuclei, dispersed chromatin, indistinct nucleoli and small amounts of eosinophilic cytoplasm, as confirmed by CD34 and c-Kit immunostains. Erythroid elements were markedly proportionally increased and exhibited maturation. Myeloid elements were markedly proportionally decreased and exhibited maturation. Megakaryocytes were markedly increased and occurred in occasional loose clusters, and included frequent dysplastic small hypolobated forms. Bone marrow cytogenetic analysis showed a translocation between chromosomes 3 and 8 in all 15 metaphases, with 2 of these abnormal cells also showing a translocation between chromosomes X and 2. FISH analysis

showed that the t(3;8) led to MECOM (EVI1) rearrangement (Figure 1(A,B)). A targeted gene panel assay found mutations in U2AF1, ASXL1, and PTPN11. A diagnosis of AML with myelodysplasia-related changes was made. The patient was treated with standard daunorubicin and cytarabine on a 7+3 regimen, HiDAC $(1.5 \text{ g/m}^2 \text{x8})$ reinduction and subsequently 3 cycles of decitabine (20 mg/m² daily, for 10 days) (Table 1). However, a complete remission was never achieved, and blast cells fluctuated between 10% and 50%. Karyotype analysis from 3 additional biopsies all showed the t(3;8) as the sole cytogenetic aberration. Bone marrow biopsy 12 months after the initial diagnosis demonstrated a jump in blasts to 80-90%. Karyotype analysis demonstrated the t(3;8) in 9 cells, of which 4 cells also contained a newly acquired t(8;13) (Figure 1(C)). FISH assays confirmed FGFR1 rearrangement (Figure 1(D)). FISH was also performed on 2 previous samples retrospectively, which showed no FGFR1 rearrangement in 200 interphase nuclei (positive cutoff value >1% in this lab), while *MECOM* rearrangement was detected as expected in both samples; confirming a late-appearing FGFR1 rearrangement (data not shown). The patient succumbed to the disease one month later.

We describe, here, FGFR1 rearrangement as a secondary change in AML with MECOM rearrangement. The secondary FGFR1 rearrangement was associated with rapid disease progression. Interestingly, 2 cases of lateappearing t(9;22) have also been reported in leukemias with MECOM rearrangement [1-2]. Further, in a series of 42 MECOM-rearranged myeloid malignancies, all but one case harbored mutations in the genes activating RAS or receptor tyrosine kinase (RTK) signaling pathways, suggesting synergistic oncogenic relationship between dysregulated MECOM expression and RAS/RTK signaling [6]. ZMYM2 is a zinc finger transcription factor whose fusion with FGFR1 in the t(8;13) produces a cytoplasmic chimeric protein with ligand-independent dimerization, leading to constitutional activation of FGFR1 kinase signaling [7]. In addition to ZMYM2, 13 different FGFR1 fusion partners have been reported, although ZMYM2-*FGFR1* is the most common fusion, accounting for \sim 40%

CONTACT Sheng Xiao 🐼 sxiao@partners.org 💽 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston (MA), USA © 2018 Informa UK Limited, trading as Taylor & Francis Group

Figure 1. Karyotype and FISH assays detected *MECOM* rearrangement in the initial clone and both *MECOM* and *FGFR1* rearrangement in the subsequent subclone. (A) GTG banding showed translocation between chromosomes 3 and 8 (arrow) as a cytogenetic sole change. (B) FISH analysis showed translocation of the telomeric *MECOM* fragment (red) from chromosome 3 to chromosome 8. (C) GTG banding at time of disease acceleration showed (8;13) (arrowheads) in addition to the t(3;8) (arrows). (D) FISH analysis with *FGFR1* split apart probes confirmed *FGFR1* rearrangement (arrow; red for 5'*FGFR1* and green for 3'*FGFR1*).

 Table 1. Karyotype, blasts (%) and therapy history at various times of the disease.

Time	Karyotype	Blasts (%)	Therapy
day 0	46,XX,t(3;8)(q26.2;q24.2)[13]/ 46,idem,t(X;2)(q13;q13)[2] .ish t(3;8) (RP11- 637O11,RP11-82C9+; RP11-362K14+)	70%	7+3
day 14	46,XX,t(3;8)(q26.2;q24.2)[10]/ 46,XX[5]	30-40%	
day 26	,		Hidac
day 47		10%	
day 137 day 153	46,XX,t(3;8)(q26.2;q24.2)[5]	40-50%	Decitabine
day 352	46,XX,t(3;8)(q26.2;q24.2)[7]	30-40%	
day 376	46,XX,t(3;8)(q26.2;q24.2)[5]/ 46,idem,t(8;13)(p11; q12)[4] .nuc ish (RP11- 637011,RP11-82C9,RP11- 362K14x2) (RP11- 637011,RP11-82C9 sep RP11-362K14x1) [83/ 100],(FGFR1x2)(5'FGFR1 sep 3'FGFR1x1)[17/100]	80-90%	

of all FGFR1 rearranged cases [4]. The different FGFR1 fusion partners have clinicopathological associations: for example, ZMYM2-FGFR1 is associated with T-cell lymphoblastic leukemia/lymphoma, compared to other FGFR1 rearrangements [8], whereas BCR-FGFR1 is associated with CML-like disease [9]. Recent studies have also demonstrated oncogenic FGFR1 activation in lung, breast, prostate, and bladder cancers. In these solid tumors, the FGFR1 genomic aberrations have included gene fusions, point mutations, and gene amplification [10]. While tyrosine kinase inhibitors are effective in treating many tumors, FGFR1 inhibitors have not been very successful in treating tumors with FGFR1 activation. Our initial clinical trial of PKC412 was effective in a patient with progressive myeloproliferative disorder with (8;13) [11]; however, subsequent studies with the FGFR1 inhibitor ponatinib were less successful [12]. Novel FGFR1 inhibitors are currently being tested in clinical trials for solid tumors with FGFR1 activation [13]. Recently a novel FGFR kinase inhibitor INCB054828 induced complete resolution of eosinophilia, complete hematologic, cytogenetic and molecular remission in a patient with *FGFR1* rearranged MPN [14]. Hopefully these new FGFR1 inhibitors can be helpful in treating myeloid/lymphoid neoplasms with *FGFR1* rearrangements, given that these remain diseases with dismal prognosis.

Potential conflict of interest: Disclosure forms provided by the authors are available with the full text of this article online at https://doi.org/10.1080/10428194.2018.1493733.

References

- [1] Han JY, Theil KS. The Philadelphia chromosome as a secondary abnormality in inv(3)(q21q26) acute myeloid leukemia at diagnosis: confirmation of p190 BCR-ABL mRNA by real-time quantitative polymerase chain reaction. Cancer Genet Cytogenet. 2006;165:70–74.
- [2] Quintás-Cardama A, Gibbons DL, Cortes J, et al. Association of 3q21q26 syndrome and late-appearing Philadelphia chromosome in acute myeloid leukemia. Leukemia. 2008;22: 877–878.
- [3] Shah N, Leaker MT, Teshima I, et al. Late-appearing Philadelphia chromosome in childhood acute myeloid leukemia. Pediatr Blood Cancer. 2008;50:1052–1053.
- [4] Strati P, Tang G, Duose DY, et al. Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leukemia and Lymphoma. 2017;9:1–5.
- [5] Kumar KR, Chen W, Koduru PR, et al. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with

trilineage blasts and RUNX1 rearrangement: A case report and review of literature. Amer J Clin Pathol. 2015;143: 738–748.

- [6] Gröschel S, Sanders MA, Hoogenboezem R, et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood. 2015;125:133–139.
- [7] Xiao S, McCarthy JG, Aster JC, et al. ZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood. 2000;96:699–704.
- [8] Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: A distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–107.
- [9] Pini M, Gottardi E, Scaravaglio P, et al. A fourth case of BCR-FGFR1 positive CML-like disease with t(8;22) translocation showing an extensive deletion on the derivative chromosome 8p. Hematol J. 2002;3:315–316.
- [10] Helsten T, Elkin S, Arthur E, et al. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22:259–267.
- [11] Chen J, Deangelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci USA. 2004;101:14479–14484.
- [12] Kreil S, Adès L, Bommer M, et al. Limited Efficacy of Ponatinib in Myeloproliferative Neoplasms Associated with FGFR1 Fusion Genes. Blood. 2015;126:2812.
- [13] Chae YK, Ranganath K, Hammerman PS, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017;8:16052–16074.
- [14] Verstovsek S, Subbiah V, Masarova L, et al. Treatment of the myeloid/lymphoid neoplasm with FGFR1 rearrangement with FGFR1 Inhibitor. Ann Oncol. 2018. DOI:10.1093/annonc/ mdy173